Near-Optimal Algorithms for Online Matrix Prediction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-Optimal Algorithms for Online Matrix Prediction

In several online prediction problems of recent interest the comparison class is composed of matrices with bounded entries. For example, in the online max-cut problem, the comparison class is matrices which represent cuts of a given graph and in online gambling the comparison class is matrices which represent permutations over n teams. Another important example is online collaborative filtering...

متن کامل

Commentary on "Near-Optimal Algorithms for Online Matrix Prediction"

This piece is a commentary on the paper by Hazan et al. (2012b). In their paper, they introduce the class of (β, τ)-decomposable matrices, and show that well-known matrix regularizers and matrix classes (e.g. matrices with bounded trace norm) can be viewed as special cases of their construction. The β and τ terms can be related to the max norm and to the trace norm, respectively, as explored in...

متن کامل

Near-Optimal Online Algorithms for Prize-Collecting Steiner Problems

In this paper, we give the first online algorithms with a polylogarithmic competitive ratio for the node-weighted prize-collecting Steiner tree and Steiner forest problems. The competitive ratios are optimal up to logarithmic factors. In fact, we give a generic technique for reducing online prize-collecting Steiner problems to the fractional version of their non-prize-collecting counterparts lo...

متن کامل

Near-Optimal Online Algorithms for Dynamic Resource Allocation Problems

In this paper, we study a general online linear programming problem whose formulation encompasses many practical dynamic resource allocation problems, including internet advertising display applications, revenue management, various routing, packing, and auction problems. We propose a model, which under mild assumptions, allows us to design near-optimal learning-based online algorithms that do n...

متن کامل

Optimal Distributed Online Prediction

Online prediction methods are typically studied as serial algorithms running on a single processor. In this paper, we present the distributed mini-batch (DMB) framework, a method of converting a serial gradient-based online algorithm into a distributed algorithm, and prove an asymptotically optimal regret bound for smooth convex loss functions and stochastic examples. Our analysis explicitly ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Computing

سال: 2017

ISSN: 0097-5397,1095-7111

DOI: 10.1137/120895731